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Laminar throughflow between finite parallel disks, one stationary and the other 
rotating, can be characterized by four dimensionless parameters in the general case. 
But, if the ratio of disk spacing to disk radius is small, an approximate definition of the 
flow may be made with reference to a single parameter, the Ekman number. The 
equations of motion and the equation of continuity in this ‘thin-film ’ approximation 
are reduced here to an initial-value problem for nonlinear ordinary differential equa- 
tions, by a Galerkin-type procedure. Hamming’s modified predictor-corrector method 
is employed subsequently to solve for the stream functions. Radial pressure profiles 
of this solution are compared with published experimental data. The calculated 
results may be applied to the design of hydrostatic bearings and face seals. 

1. Introduction 
The laminar throughflow which occurs between parallel disks when one disk is 

rotated and the other is stationary while a line source is placed coincident with the 
axis of rotation may be applied to  the design of hydrostatic bearings, face seals, 
clutch plates and rotating heat exchangers. When the disks are of finite radius and 
the film is thick, the flow can be characterized in terms of four dimensionless para- 
meters and two sets of boundary conditions, which are prescribed at  some starting 
radius rl > 0 and at the disk radius r2, respectively. If, however, the ratio s / rz  of 
disk separation to disk radius is small and if attention is limited to some annular 
region r1 < r < rB, where rB is the position of incipient backflow, the flow is ad- 
equately described by a single dimensionless parameter, the Ekman number. As the 
problem becomes parabolic under this ‘ thin-film ’ approximation, boundary conditions 
may no longer be prescribed a t  the disk radius r2.  Furthermore, the precise nature 
of the boundary (now initial) conditions that are to be prescribed a t  the starting 
radius rl > 0 becomes less important, as these conditions are washed out within a 
short distance downstream from rl .  Their significance is retained only as it relates to 
the number of terms that must be included in our series solution to give a specified 
accuracy. It was found that convergence of the pressure is fastest if the initial condi- 
tions are given by the creeping-flow solution. It is emphasized, however, that identical 
velocity profiles are obtained with different initial conditions (Szeri & Adams 1976). 

The problem of laminar throughflow between closely spaced disks, either stationary 
or rotating, has been discussed extensively in the literature, both experimentally and 
theoretically. When the two disks are stationary and fluid inertia is neglected, theory 
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predicts that a logarithmic pressure drop is required by viscous dissipation. Experi- 
ments performed at  low flow rates verify this theoretical result (Coombs & Dowson 
1965). If the throughflow Reynolds number (defined by R, = &/2nvs, where Q is the 
flow rate) is now increased, convective inertia gains importance. I ts  effect is to increase 
the pressure in the radial direction, rapidly at small radii and more moderately at 
large radii. At small values of the dimensionless radius defined by p = r/sR$, con- 
vective inertia effects outweigh viscous dissipation, whereas at large p they orily 
slightly modify the creeping-flow solution. To account for the effect of convective inertia 
Livesey (1960) argued that departure from parallel flow must be slight even at  large 
flow rates. Retaining uau/ar as the only significant inertia term, where u is the similar 
profile of the creeping-flow solution, he found that 

d p  12 2K 

G = - P + F  
Here ?j = ps2 /pRQ is the dimensionless pressure. The value of K was given by 
Livesey as 0.6. By assuming a slight departure from the parabolic velocity profile of 
creeping flow, Moller (1963) found the value K = 0.72. Jackson & Symmons ( 1 9 6 5 ~ )  
followed the earlier work of Hunt & Torbe (1962) and expanded the radial velocity 
in powers of rJr,  the coefficients of this series being functions of the normal co- 
ordinate. Jackson & Symmons calculated K = 0.77143. A small perturbation of the 
creeping-flow solution led Savage (1964) to identical results. 

When one of the disks is rotating, there is further distortion of the creeping-flow 
profile due to centrifugal inertia. That this distortion can be large enough to destroy 
t,he load capacity of a hydrostatic bearing was convincingly demonstrated by Osterle 
& Hughes (195718). The solution was based on the assumptions of negligible convective 
inertia and a rotational inertia calculated from a linear circumferential velocity. Their 
radial pressure gradient can be represented in the form 

dF 12 3p +- - =--  
dp p 10E2’ 

where E = v/s2w is the Ekman number and w is the disk’s angular velocity. Dowson 
(1 961) applied identical considerations to a hydrostatic step bearing geometry. His 
results are in agreement with the findings of Osterle & Hughes. 

Experimental data are given by Moller (1963) and by Jackson & Symmons ( 1  9653) 
for stationary disks. Throughflow between a stationary and a rotating disk was 
investigated experimentally by Coombs & Dowson (1965), Makay (1967) and Nirmel 
(1970). 

2. Analysis 
Two parallel disks of radius r2, one stationary and the other rotating at  a constant 

rate 0, are located at  z = 0 and z = s, respectively, in a cylindrical co-ordinate system 
(r,  8 , z ) .  Relative to this co-ordinate system, if rotational symmetry is postulated, 
t,he equations of motion and continuity are as follows: 
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u a  
r ar az 

in 0 < rl < T < r2, 0 < z < s. 

The equation of continuity is identically satisfied by taking 

u = r-l aY/az, w = - r-JaY/ar, (2) 

and henceforth the equations of motion are written in terms of the stream function Y. 
If, in addition, the pressure is eliminated from the first and the third momentum equa- 
tions then the system of equations (1) can be replaced by the following two equations: 

where the operator is defined by 

The boundary conditions on Y and v at the disks are dictated by no slip and by 
mass conservation: 

a Y p  = a Y / a z  = v = 0 at z = 0, (5  a) 

aY/ar = aY/az = 0, v = rw a t  z = S,  ( 5 b )  

where 
Y ( r ,  s) - Y ( r ,  0) = &/2n, 

Q = 2nr IOs u(r ,  z )  dz 

is the net rate of flow across an arbitrary cylinder r = constant. 
In  addition to (5) we specify the following conditions at  some r = rl and at r = r2: 

Y =  q5(z), v = vl(z) at r = rl > 0, (6  a) 

‘Y’ = $(z ) ,  v = v2(z) at r = r2. ( 6 b )  

z = k lc ,  r = k , p ,  Y = k 3 T ,  v = k 2 k , p a .  (7) 

Let the dimensionless quantities c, p ,  T and 0 be defined by 

Substitution of (7) into (3)-(6) yields the equations 

1-2  
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and the boundary conditions 
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aT/ap = a T / a g  = si = o at g = 0, ( 1 0 4  

aT/ap = = 0, fi = 1 at g = I, ( l o b )  

iP = im, fi = w3 at  p = p1,pz, (10e) 

( 1 0 4  T(p, 1 )  - T(p, 0) = Q/2mk3. 

Equations (8)-(10) represent our mathematical model of the flow in the general 
case. This model is dependent on four dimensionless parameters. 

The number of essential flow parameters can be reduced if the gap between the 
disks is narrow, i.e. if s / rz  < 1, for then the radial variation of the shear stress may be 
ignored and we have the approximation 

For this thin-film case it is expedient to choose the normalizing constants in (7) as 

k,  = s, k ,  = sB$, k3 = vsRQ, k4 = o, (12) 

where RQ = Q/2mvs is the throughflow Reynolds number. 
Substitution of ( 1 1 )  and (12) reduces (8) and (9) to the form 

(13) 

(14) 

aT a i azF aT a I azF 1 a(pfi2) ia4T 
ag ap 0 p2 a p  ap ag 0 p2 ayz ~2 ag p q 4  ' 

aT a(p2fi) aT a(p2fi) az(p2Q) 
P S  

ap aP ac ag 

-_ -- --- -- - 

-----= 

The simplification of (8) and (9) that is achieved by the choice of the constants (12) 
and the approximation in ( 1 1 )  is considerable. Equations (13) and (14) are both of 
only first order in p and, in addition, the flow is now characterized by a single dimen- 
sionless parameter, the Ekman number E = v/s2w. 

It is true that two additional paramet>ers p1 and p2 have formally been retained in 
the boundary conditions even though the approximation (1  1 )  has been made, but (13) 
and (14) are now parabolic in p with the consequences that (a )  boundary conditions 
may be prescribed at  only a single (upstream) p position and ( b )  just a short distance 
downstream from that p boundary the family of flows with a given Ekman number 
but various initial conditions have identical dimensionless velocity profiles. Thus the 
two parameters p, and p2 lose their significance as defining parameters when solving 
for thin films, leaving the Ekman number as the single parameter of the model. 

The partial differential equations (13) and (14) are first reduced to two systems of 
ordinary differential equations. To this end two complete sets of functions {Fn(C)} and 
{Gn(g))  are considered whose elements have continuous derivatives to the right order 
in 0 < 5 < 1 and vanish, together with FA, at both 5 = 0 and 5 = 1 .  It is assumed 
that the Nth approximations TAV and fiLv to T and a, respectively, can be expanded 
in the series 
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with suitable conditions on $([) and 8(5) a t  y = 0, 1 and on f n ( p )  and g,(p) at  

P = P1. 
Applying the usual arguments of the Galerkin-Kantorovich method, (13) and (14) 

are replaced by two sets of nonlinear ordinary differential equations: 

-&6 ' , f ' f  -- 2P3 
kn3 n j , 2 E 2 ~ ~ 2 j g n g j }  = 0, = 172,3, * . . , N ,  (16) 

and 

The coefficients A$?, Ah:!, . . . , BPAj are defined in the appendix. 

Selecting - - 
$ = C2(3 - 2 0 ,  8 = 5, (18a, b )  

(18c) 

G,(C) = sin (nnc), ( 1 8 4  

I?,(<) = cos{(n- 1 ) n ~ } - c o s { ( n +  l)n<), 

T N  and 
require that 

Note that (18) turns (15) into a perturbation of the creeping-flow solution. This 
represents an improvement, in the number of terms required for a given accuracy, 
over Szeri & Adams (1976). 

Equations (16) and (17) together with conditions (19) define an initial-value problem. 
This initial-value problem was solved numerically, using Hamming's modified 
predictor-corrector method. Solutions were obtained over a wide range of the para- 
meter E ,  using approximat,ions up to and including N = 8. (For details see Adams 
1977.) 

Having found approximations to  the true solutions P and a, we are in a position 
to calculate the radial variation of the averaged pressure 

satisfy all the boundary conditions of the problem, provided that we 

f n ( P 1 )  = 0 ,  9JP l )  = 0. (19) 

From the first of the momentum equations ( 1 )  one obtains 
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P 
0.10 
0.22 
0.30 
0.38 
0.46 
0.54 
0.62 
0.70 

A P ( p ;  0.78) at E = 100 
A 7 7 

p 1  = 0-1 
- 35.92 - 
- 9.02 - 

0.23 4.83 
3.74 4.45 
3.86 3.91 
3.04 3.04 
2.03 2.03 
1-00 1.00 

p1 = 0.3 P 
1.0 
2.0 
3.2 
3.3 
3.4 
4.0 
5.0 
6-0 

A&; 7.0) at E = 2.9 - 
p1 = 3.2 

21.782 - 
14.046 - 
8.626 8.617 
8.272 8.264 
7.930 7-923 
6.077 6.072 
3.580 3.578 
1.604 1.603 

p1 = 1.0 

TABLE 1. Effect of starting radius p1 on pressure drop A F .  
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FIGURE 1. s ( p ;  p I )  v.s. p. Experimental data (Moller 1963): 0, RQ = 1.08 x lo6, 8 = 3.81 x 

present authors; . . . a ,  pl = 0.1, present authors. 
lo-* cm; 0, RQ = 5.41 x lo4, s = 7.62 x cm. Theory: ---, creeping flow; - 9 pi = 0.3, 
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where 
n(nz + 1) if n = m ,  

1 ) 2  if n = m k  2,  

otherwise, 

X, ,  = n [ l +  ( -  1)”] / (n2-  1 ) 2  if n =i= 1 ,  X, = 0. 

It may be remarked here that in ( 2 1 )  the term - 1 2 / p  represents the contribution 
of creeping flow, the term p / 3 E 2  is directly comparable with the term 3 p / 1 0 E 2  of 
Osterle & Hughes (1957/8) for rotational inertia, and the term 6/5p3 corresponds to 
the convective-inertia term 2K/p3 of Livesey (1960). Then at any radial position r 

where 

A P ( p ; p l )  = I P y d p  
PI 

is calculated from ( 2 1 ) .  
It is a premise of the present analysis that the initial conditions are washed out 

completely within a short distance, so that 

AP(pb;pc) = AF(pb;pa)-AF(pc;pu) ,  Pa < P b  PO ( 2 3 )  

is independent of conditions (10)  and is valid for all thin films without backflow at 
points sufficiently far removed from t,he ‘inlet ’. This is illustrated in table 1 and figure 
1 for specific cases. 

The definition 

A F ( p ; p l )  = 2 n I P : p A P d p ,  A P ( p l )  = 0, (24) 

leads to the resultant fluid force TV on either disk: 

The formula 
W(r;r , ) /pvRt  = ~ ( r ; r l ) - n ( p 2 - P 2 1 ) A P ( P ; P 1 ) .  ( 2 5 )  

is also useful in applications. 
The torque coefficient C,, is defined by 

c,, (P ; PdR, s = M ( r  ; r,)n, SISPVRt?, 

where the subscripts R and S refer to the rotating disk and the stationary disk, 
respectively. The torque coefficients have properties similar to those of A P  and are 
calculated from 

(27 ) 

(28 1 

In  these equations i .(p4-&)/2E is the torque coefficient of the linear (unperturbed) 
circumferential velocity. 

2 E  1 
7 (CM)R = , (P4-P9+4nC-n(-  n 1)”jp:P3s,(P)dP 

and 
P 1 

% u s  7T = z ( P 4 - P 3 + 4 m C n I  n P3S,(P)dP. 
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FIGURE 2.  r P ( p ;  pz)  us. p. m, experimental data, RQ = 8.78 x lo3, s = 2.54 x lop2 cm (Jackson 
& Symmons 19656). Theory: -*.-, Jackson & Symmons (1965b); --- , creeping flow; ---, 
present authors. 

3. Discussion 
Results of the thin-film approximation are compared with published experimental 

data in two categories. I n  the first category of experiments both disks are stationary. 
Though the present solution calculates flows without swirl only in the limit E -+ co, 
a t  E = 100 and p < 4 the ratio of rotational inert)ia to convective inertia is a t  most of 
order Thus solutions obtained under these conditions can, and will be, used to 
predict the flow between stationary disks. Figure 1 indicates that at large values of p 
the creeping-flow solution adequately describes flow with no swirl. But as p decreases, 
corresponding to an increase in flow rate with a fixed geometry, creeping flow seriously 
over-estimates the pressure drop. The experimental data in this figure were obtained 
with 0.27 < p1 < 0.36. Figure 1 also contains theoretical curves calculated with 
p1 = 0.1 and p1 = 0.3, respectively. In  light of figure 1 our earlier statement that 
initial conditions are washed out within a short distance needs to be clarified. Provided 
that p > 0.5 (the range of insignificant convective inertia), the radial extent of the 
‘inlet region’ is small and its effect on overall flow characteristics, such as the net 
pressure drop, is negligible. But if p1 < 0-5 the radial extent of the inlet region may 
be significant in comparison with the radius of the flow field, though still limited 
to p l  < p < 0.5 approximately, and its effect on overall flow characteristics must be 
calculated. We might conjecture that the thin-film approximation is uniformly valid 
for the prediction of flows with no swirl for all entrance conditions, provided that 
p1 2 0.5. If p1 < 0.5 then the present solution, or any other solution for that matter, 
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FIGURE 3. e ( p ;  p z )  2’s. p. Experimental data (Makay 1967): 0, E = 2-73, RQ = 1.38 x los, 
s = 5.08 x cm. - , theory, present 
authors. 
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FIGURE 4. A P ( p ;  p2) vs. p .  Experimental data: 0, E = 2.9, RQ = 52.11, s = 3.24 x 10-2 cm 
(Coombs & Doweon 1965); 0, E = 2.91, RQ = 418.4, s = 2 . 5 8 ~  10-* cm (Nirmel 1970). 
Theory: -.-, Osterle C% Hughes (1957/8); --, present authors. 
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FIGURE 5. s ( p ;  p l )  'us. p. Experimental data: D, E = 3.86, RQ= 41.0, s = 2.9 x cm 
(Coomba & Dowson 1965); 0, E = 3.83, RQ = 190.7, s = 3.96 x 10-2 em; 0,  E = 3-85, 
RQ = 69-75, s = 3.64 x 10-2 em (Nirmel 1970). -, theory, present authors. 

FIGURE 6. A?@; p2) 'us. p. 0, experimental data, E = 4.89, RQ = 82.29, 
s = 2.08 x 10-2 cm (Coombs & Dowson 1965) ; -, theory, present authors. 
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- 
E AP (N/mZ) Q (cm3/s) 

2.9 2.58 x lo6 19.34 
(1176 r.p.m.) (12.13) 

1-50 x los 77.35 
(69.65) 

0.932 1.01 x 106 117.78 
(3660 r.p.m.) (46.96) 

6-28 x lo6 309.06 
(291.53) 

TABLE 2. Hydrostatic-bearing performance. r1 = 5.207 cm; r2 = 26.035 cm; s = 0.00508 om; 
p = 9.1907 x lo-* N s/m2; v = 9.2174 x lo-' m2/s. Numbers in brackets from creeping-flow 
solution. 

P 
1 2 4 6 8 10 I2 14 16 18 20 22 24 26 28 30 

0 

- 5  

- 10 

- 15 

- 20 

- 25 

- 30 

- 35 

- 40 

should contain the actual value of p1 together with the actual initial conditions. 
(A change in the value of the Ekman number does not seem to alter these conclusions.) 
The experimental data in figure 2 include the p range of significant convective inertia 
and were obtained ,with p1 = 0.1. The same value of the inlet radius was used when 
calculating the two theoretical curves, one by the proposed method and the other 
from the formula of Jackson & Symmons (1965 b ) .  

I n  the second category of experiments one disk is rotated and the other is stationary. 
For Makay's (1967) data in figure 3, the flow rate is moderately large. I n  consequence 
the experimental points fall in the intermediate p range where convective inertia 
has already lost its significance (p > 0.5) while rotational inertia has not yet made its 
strong effect felt owing to the large values of the Ekman number in the experiments. 
The data in figure 4 of Coombs & Dowson (1965) and Nirmel (1970) were obtained 
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~ ~ 1 0 4 ~  I I I , , I , , I , I I 

I 0 4  

t \ 

1 0  

10' 

1 0 0  
1 3 5 7  

I c 

L.'.& 

9 11 13 15 17 19 31 33 35 17 29 
P 

FIGURE 8. W(p,  l.O)/,uvR: vs. p. Theory (present authors): --, creeping flow; -.-, E = 3.86; 
-D-, E = 2-9; -0-, E = 2.0; -..-, E = 0.932; . . . . a ,  E = 0.5. 

a t  low rates of flow. These data cover a large p range, and consequently, even though 
their Ekman number is comparable to the Ekman number for figure 3, they show 
very significant rotational-inertia effects. A comparison of figures 4 , 5  and 6 indicates 
that the position of zero radial pressure gradient moves towards the axis of rotation 
as E is decreased. Then, supposedly, at some small value of E it is possible to have 
significant rotational effects within the inlet region; we have been unable to find 
experimental data obtained under such conditions. 

On the basis of the foregoing comparison with experimental data we might conclude 
that the present method underestimates somewhat the effect of rotational inertia 
(see figure 6 at large p ) ,  but that in general it offers a satisfactory solution to the problem 
at hand. In  order to judge its capability in predicting convective-inertia effects, 
however, calculations should be performed using the actual initial conditions of the 
experiment. (This could be done by simply changing (18a, b )  if the entrance conditions 
of the experiments were known.) We mention here that all the calculations reported 
in this paper were made with four Galerkin terms. The reader interested in convergence 
studies is referred to Adams (1977) and Szeri & Adams (1976). 
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P 
1.5 
2.0 
2.5 
3.0 
4.0 
5.0 
6.0 
7.0 

TABLE 3. Torque coefficients at E = 2.9. 

(2E/n) cM(p; l S o ) R  

5.3 
18.3 
44.1 
89.3 
272.9 
652.8 
1337.0 
2458.0 

It remains now to indicate the usefulness of the present solution in a quantitative 
prediction of rotational-inertia effects, say in a thrust bearing. The bearing of our 
choice has rl = 5.207 em and r2 = 26-035 cm. The thickness of the lubricant film is 
maintained at  s = 0.00508 cm and the lubricant viscosities arep = 9.1907 x Ns/m2 
and v = 9.2174 x lo-' m2/s. The entries in table 2 were calculated with the aid of 
figure 7, figure 8 and (26), and pertain to rotational speeds of N = 1176 r.p.m. and 
N = 3660 r.p.m. (Table 2 also contains the creeping-flow solution.) At higher recess 
pressures the predictions of the present theory approach the creeping-flow solution 
(though our flow rates are higher and our load capacities are lower, consistently). 
Such is not the case a t  lower recess pressures. The loss of load capacity is only 50 % 
relative to creeping flow a t  the lower speed and lower recess pressure, but at the higher 
speed and lower recess pressure the load capacity becomes negative. Film collapse 
could be prevented by increasing the recess pressure, i.e. by moving to the left on the 
appropriate curve E = constant in figure 7. Figures 7 and 8 were constructed with 
practical thrust-bearing designs in mind. Typically, for air bearings E N 175, for 
water bearings E N 1.0 and for oil bearings E N 2.0. The range of many practical 
bearings is adequately covered by these figures. Torque calculations show ( a )  that 
the torque is always smaller on the stationary disk and larger on the rotating disk 
than that given by the assumption of a linear circumferential velocity (Osterle & 
Hughes 1957/8) and (b)  that bowing of the circumferential velocity profile, due to 
interaction with the throughflow, and the consequent discrepancy between the torques 
on the two disks are more signifimnt at low values of p, as indicated in table 3. 

The authors are pleased to express their indebtedness of Prof. D. Dowson of Leeds 
University for supplying them with details of his experiments and to Prof. W. C. 
Griffith of North Carolina State University for drawing their attention to the work of 
C. N. Nirmel. They are also grateful for the reviewers' comments. 



14 A .  Z .  Szeri and M .  L.  Adam,s 

Appendix 
The notation 

J o  
is used here. 
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